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Abstract. The semiclassical theory for billiards with mixed boundary conditions is developed 
and explicit expressions for the smooth and the oscillatory pans of the spectral density are 
derived. The p”unehic dependence of the specmm on the boundary condition is shown to be 
a v a y  useful diagnostic tool in the semiclassical analysis of the s p e e r ”  of billiards. It is also 
used to check in detail some recently propased parametric spectral statistics. The methods are 
illustrated in &e analysis of the spec”  of the Sinai billiard and its paramevic dependence on 
the boundary condition on the dispersing as. 

1. Introduction and statement of the main results 

A classical billiard is completely defined once its boundary E is prescribed. Then, the 
requirement that the particles (rays) reflect specularly determines the dynamics. To address 
the quantum (wave) analogue, it is necessary to solve the Scbrodinger equation, which 
reduces for billiards to the Helmholtz equation 

(1) 
where k is the wavenumber under consideration and we use natural units where h = 2m = 1 
and E = ka. 

In wave dynamics, one needs to supply an additional piece of information, that is, a 
condition which the wavefunction has to satisfy on the boundary. In quantum mechanical 
applications, one often considers the boundary as a high potential wall whose height tends 
to infinity and then the boundary condition is the Dirichlet condition 

(A  + k 2 ) $ ( i )  = 0 

*(?)=O ? € Z ~  (2) 

a&(?)=o i € Z  (3) 

Anothm common boundary condition is the Meumann boundary condition 

where 86 stands for the normal derivative, with the normal pointing outside. This boundary 
condition appears most naturally for the pressure field in acoustics. One can generalize the 
above boundary conditions by requiring 

K ( i ) * ( ? )  + a&(;) = 0 i E c . (4) 
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This form leaves the problem self-adjoint when K is real. The Dirichlet boundary condition 
is recovered by setting K(?)-' = 0. We shall restrict the discussion to non-negative K ( ? )  

functions. If K(?) is negative, the Helmholtz equation can have solutions for imaginary 
values of the wavenumber k .  Such solutions are unphysical, since they correspond to steady 
states despite a dispersion of energy in the medium that takes place when the imaginary 
part of k is different from zero [I] .  Furthermore, we shall not deal with the most general 
positive K ( ? )  but restrict our attention to piecewise constant functions on the boundary. In 
some applications it is convenient to express (4) in terms of a positive parameter 6 and a 
(piecewise constant) mixing angle ol so that the boundary condition reads 

(5) 
This form interpolates conveniently between the Dirichlet and the Neumann boundary 
conditions, in terms of 01 which is limited to the interval 0 < 01 < $. 

At this point we would like to make the following observation. In the semiclassical 
domain, the dominant term in the boundary condition (4) is a;$(?) which is of order k .  
Hence, for a fixed K and in the semiclassical limit (k + a), the specmm will always tend 
to the Neumann case. A more proper definition of the semiclassical limit is one, that in the 
limit k + M also allows an interpolation between the Dirichlet and Neumann boundary 
conditions. This can be achieved by considering k and K / k  as independent parameters 
when performing this limit. To emphasize this point, we shall always quote the results as 
functions of these two parameters. 

Mixed boundary conditions are not encountered in physical applications as often as 
Dirichlet and Neumann boundary conditions. A penurbative treatment of the Helmholtz 
equation with respect to changes in boundary conditions can be found in [ZJ, but the 
semiclassical quantization of billiards with mixed boundary conditions was rarely discussed 
previously. The only exception we found was the work of Balian and Bloch, who 
encountered these boundary conditions in a nuclear physics context 131. 

Our interest in the mixed boundary conditions stems from the observation that one can 
use the additional freedom provided by the function e(?) as a powerful tool in the analysis 
of various aspects of the semiclassical quantization of billiards. To explain this rather non- 
conventional approach, we shall have to start by quoting the results of the semiclassical 
derivation for two-dimensional billiard systems which is presented in the next two sections. 

We consider the spectral density in terms of the wavenumber k .  For positive k and 
k . ( K )  = +m it is given by 

bcosol $(?) + sinol ai$(?) = 0 7 E E. 

m 

d(k; K )  = 6 (k - kn(K))  = d(k;  K )  -t d,,(k; K )  (6) 
"=I 

which depends parametrically on the boundary conditions. The semiclassical theory uses 
separate methods to evaluate the smooth and the oscillatory components of the spectral 
density. For the smooth spectral density we get (see sections 2.1. 2.2, 3.1 and appendix 6 
for the derivation) 

r _I 

Ak 
2rr 4a 

This is the generalized Weyl formula. As expected, the leading term involving the area of the 
billiard A is independent on the boundary condition. The higher-order corrections, starting 
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from the term containing the circumference L ,  depend on K in a way which interpolates 
between the known expressions for the Dirichlet and the Neumann boundary conditions. 
The third term is the curvature contribution which contains an integral over the curvature 
I / R ( s ) ,  and dC(k;K) denotes contributions from comers. For a 90" comer with mixed 
boundary conditions on one side and Dirichlet or Neumann boundary conditions on the 
other side it is given by 

1 :  
d,(k; K )  = F-- 

43rk 1 + (2)' 
where the negative sign corresponds to the Dirichlet case. 

The semiclassical expression for d,,(k; K )  is written as a sum of oscillatory terms 
whose periods correspond to the lengths of classical periodic manifolds. The semiclassical 
treatment distinguishes between contributions of unstable, isolated periodic orbits and 
contributions of continuous manifolds of neutral periodic orbits. In the standard theory, 
the former are given by the Gutzwiller trace formula [4, 51 and the latter were first derived 
by Berry and Tabor [6,7]. To leading order, the introduction of mixed boundary conditions 
does not affect the amplitude of the oscillating terms. The phase of each term is changed 
relative to the case with Dirichlet boundary conditions, by the addition of the K-dependent 
phase 

where the periodic orbit bounces n times off the boundary at the points (&}i=l.....n and 
kcosb" is the component of the momentum normal to the boundary at the ith bouncing 
point. This expression is the same whether the periodic orbit is an isolated unstable periodic 
orbit (see equations (77) and (81)) or belongs to a manifold of neutral periodic orbits (see 
equations (37) and (47)). When K ( ; )  = 0, one recovers the well known result tbat there is 
a phase difference of nn between the contributions of periodic manifolds in the Dirichlet 
and Neumann cases. An important feature of (9) is that except for the limiting Dirichlet 
and Neumann cases the phase depends on the normal momenta at the bouncing points. We 
would like to emphasize that the underlying classical dynamics is indifferent to the boundary 
conditions. In other words, by changing the boundary condition, one can alter the quantum 
spectrum, without affecting the periodic orbits. (This is reminiscent of billiards threaded 
by Aharonov-Bohm flux lines: the classical orbits are indifferent to this perturbation, while 
the quantum dynamics is affected [SI.) 

We shall explain now how the parametric dependence discussed above can be used as a 
diagnostic tool in the semiclassical analysis of spectra. Suppose we would like to isolate the 
contribution of periodic orbits which are confined to a certain segment of the boundary. We 
may calculate the spectrum for two ~ ( 7 )  functions which are different only in the desired 
segment. The difference in the oscillatory parts of the corresponding spectral densities will 
then depend only on trajectories which bounce off the domain of interest at least once. This 
is of particular importance when the boundary under consideration permits the existence of 
continuous families of marginally stable periodic orbits such as the 'bouncing ball' orbits 
in the Sinai and the stadium billiards [9, IO]. Their effect is best seen when the spectral 
density is Fourier transformed to give a length spectrum. Here, each family contributes a 
peak at the lengths of the bouncing ball orbit and its repetitions. If the original spectrum is 
considered in the interval [O, k,,], the intensity of the peaks at the bouncing ball lengths 
for a d-dimensional billiard scales like k:;'''' relative to the peaks appearing at the lengths 
of the unstable periodic orbits. Moreover, as d increases the number of possible bouncing 
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ball families proliferates and they can fill subspaces of dimensions ranging between two and 
d in configuration space. Thus, the bouncing ball contributions may dominate the length 
spectrum to the extent that connibutions from the unstable periodic orbits can hardly be 
resolved. The variation of the boundary conditions along the sections of the boundary which 
are visited by the unstable periodic orbits exclusively, enables us to isolate their contribution 
from the non-generic features which are due to the bouncing ball families. We shall show 
the power of this method in section 4 where we discuss in detail the spectrum of the Sinai 
billiard in the plane. 

Another interesting application is the possibility of studying the parametric spectral 
statistics, along the lines which were introduced in [ll-141 for parameter-dependent 
Hamiltonian systems. The system that we study is different from the standard one, 
since the underlying classical dynamics is independenf of the parameter 01, so that the 
classical periodic orbits are the same for all parameter values. The only change in the 
semiclassical expression is due to the phase factor (9). In particular, in section 5 we shall 
study the distributions of spectral ‘velocities’ dE,(u)/du and ‘curvatures’ d2En(a)/dorz 
for the Sinai billiard. Parametric statistics of this kind were previously performed for 
parameter-dependent Hamiltonian systems and universal distributions for chaotic systems 
were suggested, based on random matrix models. 

Much of the present work was dedicated to the derivation of the semiclassical spectral 
density for the mixed boundary condition. This requires some special care, as was fist  
noted by Balian and Bloch in their work on the smooth spectral density for billiards in 
three dimensions with mixed boundary conditions [3]. In their analysis, Balian and Bloch 
explain very clearly the main difficulty which is encountered when one addresses general 
boundary conditions rather than the Dirichlet or Neumann conditions. Their starting point 
is an integral equation for the Green function, with a kernel which involves the free Green 
function and its normal derivative on the boundary. A Born expansion then leads to a 
multiple reflection series for the Green function. Balian and Bloch showed that the kernel 
of the integral operator i s  regular for Dirichlet and Neumann boundary conditions. However, 
for any intermediate case the kernel is singular (but still integrable). Because of this singular 
behaviour, any perturhative expansion or semiclassical approximation, which can be used for 
the two extreme boundary conditions cannot be justified for any intermediate case. Balian 
and Bloch observe that ‘It is therefore not possible to use directly the integral equation for 
deriving a perturbation expansion. . .For instance, even for a plane, the expansion should 
be resummed to all orders in K’ .  Balian and Bloch did not provide the corresponding 
treatment for the oscillatory component of the spectral density, nor did they compute the 
smooth spectral density for two-dimensional billiards. Moreover, their method excludes the 
treatment of comers. The following section will be devoted to a discussion of these points. 
We shall use a variety of methods to overcome the difficulty which was identified by Balian 
and Bloch. Sections 2 and 3 are rather technical. The reader who is not interested in the 
details of the derivation can skip them and, equipped with equations (7) and (9) he/she can 
go directly to the applications. 

The paper is organized in the following way. In the next two sections we shall present 
the semiclassical theory for the spectral density. We start with integrable billiards, the circle 
and the rectangle, and then proceed to more general shapes which correspond to chaotic 
classical billiards. The numerical demonstrations and checks will be carried out for the 
Sinai billiard and therefore we shall give an independent derivation of the spectral density 
using a method which is based on the KKR technique as used by Berry 191. In all cases, 
we shall discuss separately the smooth and the oscillatory parts of the spectral density. For 
the former, we shall use a variety of methods, extending the Stewartson and Waechter [I51 
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calculations for the circle and the Balian and Bloch approach for smooth billiards. The 
resulting expression (7) for the smooth density includes the modifications due to the mixed 
boundary conditions for the length and curvature terms as well as a 90' comer term To 
calculate the modification of the oscillating part of the spectral density we shall mostly use 
the scattering approach [16-181. Section 4 will be devoted to the application of the mixed 
boundary conditions as a diagnostic tool. We shall develop a method for the elimination 
of all the structures which are due to the bouncing ball families and show how it works 
in practice for the Sinai billiard in two dimensions. In section 5 we shall discuss spectral 
statistics that depend on the sensitivity of the energy levels to a change of an external 
parameter. In particular, we compare numerical results to distributions that were obtained 
from random matrix theory, and we discuss deviations from these distributions that are due 
to the existence of families of bouncing ball orbits. Again, the system to be analysed is the 
Sinai billiard and the boundary condition on the dispersing arc will be varied. The numerical 
database was obtained by extending the scattering approach of [30] to billiards with mixed 
boundary conditions on the arc. This is an easy task because the only change required is 
to insert (79) for the boundary-condition-dependent phase shifts. The last section contains 
some discussions about the physical interpretation of the mixed boundary conditions and 
the behaviour of the boundary phase for long unstable periodic orbits. 

2. The semiclassical spectral density-integrable systems 

The semiclassical theory relates the oscillatory part of the spectral density to the periodic 
manifolds of the underlying classical dynamics. This is why it is necessary to treat separately 
billiards whose classical analogues are integrable or chaotic. We shall follow this route 
in this paper and now present the theory for two integrable billiards-the circle and the 
rectangle, deferring the treatment of chaotic billiards to the next section. The semiclassical 
expressions for the smooth components of the spectral density do not depend on the detailed 
classical dynamics. Because of the relative simplicity of the circle and the rectangle billiards 
one can use special methods to derive the smooth spectral densities in these cases. We quote 
them here since they provide both physical insight and independent checks for the general 
theory presented in the next section. Moreover, the treatment of comers will not be done 
by the method of Balian and Bloch and we rely on the analysis of the integrable problems 
for this information. 

2.1. The circle billiard 

We start with the circle billiard with mixed boundary conditions which is integrable if ~ ( 7 )  
is constant. In this case the semiclassical approximation can be derived from the exact 
solutions for the Green function and the scattering matrix. Although the circle billiard 
is a special system, the results already show how the semiclassical trace formula will be 
modified in the general case. 

The exact solutions of the Helmholtz equation for the circle billiard with a constant 
~ ( 7 )  are given in polar coordinates by 

where qm are normalization constants and Jl(z)  are Bessel functions of the first kind. The 
wavenumbers kr.m are determined by the boundary conditions (4). They have to satisfy 

K Ji(k/,,R) + k / , m  J;(kr,,R) = 0 . ( 1 0  
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For 0 c K c 00 all solutions of (11) are real I191 and the positive solutions kl.,, lie in 
between those for Neumann and Diricblet boundary conditions: k," c kl.,, c k f m ,  m 0. 
There exisoz an equal number of negative solutions k[,-,,, = -!qm which correspond to the 
same quantum state. Let us discuss briefly, what happens if K becomes negative. For every 
1, the first positive solution k1.t of (1 1) decreases as K is decreased and it coincides with 
zero and with the first negative solution if K = 4. If K is decreased further, then these 
two solutions become a pair of complex conjugate imaginary numbers. For 1 = 0 these 
solutions are imaginary for any negative value of K .  Imaginary solutions of this kind also 
exist for other billiards and for that reason our considerations are restricted to non-negative 
values of K [I]. 

2.1.1. The smooth parr ofthe spectral density. In order to obtain the smooth parts of the 
spectral density and of the spectral staircase for the circle billiard we apply the method of 
Stewartson and Waechter [15] who derived the corresponding results for Dirichlet boundary 
conditions. The method is based on the fact that the exact Green function of the circular 
billiard can be written in a closed form. 

The starting point is the Green function for the heat diffusion equation which satisfies 
the inhomogeneous differential equation 

( 0 2  -32) e(?, F',s2) =6(F - 7') (12) 

with mixed boundary conditions on a circle of radius R: 

( K  + 8;) (?c, F', sz) = 0 Ir'l = R. (13) 

This Green function is directly related to the Green function of the Helmholtz equation by 
I?(?, F', sz) = G(f, F', kz)lx,b and to the spectral density by (k  > 0) 

where the integration extends over the domain of the circle. In the following an asymptotic 
expansion of the Green function for large s will be derived and it yields an asymptotic 
expansion of the smooth part of the spectral density for large k .  A detailed discussion of 
this point is given in [ZO]. 

The solution to (12) and (13) is obtained by taking the free Green function 

which satisfies (12) and adding to it solutions of the corresponding homogeneous differential 
equation in order to satisfy the boundary conditions. In equation (15) (?-,e) and (r'. e')  are 
the polar coordinates of F and F', r< (r , )  is the smaller (greater) of r and r'. In(;) and K , ( z )  
are modified Bessel functions [21]. The Green function e(?, 7,s') can then be written as 

(16) e(F,F',sz) = -- I~(sT<)[K,(sr,)$.u,(,(sr,)Jcos[n(8 -8')I 

and the coefficients a. follow from the boundary condition (13) as 

K K , @ R )  +sKA(sR) 
KI,(sR) +s l ; ( sR)  . 

1 -  

2r "=-U3 

(17) U" = - 
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In order to obtain the spectral density one has to evaluate the trace of the Green function. 
However, since the real part of this trace is divergent one instead considers 

2n 
$(s2) = l R d r  r dt7 [e(?, 7,s') - GO(;, 7, s2)];.,i (18) 

which is finite. Evaluating the two integrals results in 

where 

(20) 
The function f (n.  s) is even in the first argument for integer n. In order to derive the 
asymptotic behaviour of k(s2) for large s. the sum in (19) can be replaced by the integral 

$(sz) = R2 l m d u  f (u ,  s) (21) 

since the correction terms are exponentially small for large s [15]. One now proceeds in 
the following way. The definition (20) of f (n,  s) consists of two factors. The first one is 
the expression for f (n. s)  in the case of Dirichlet boundary conditions on the circle and for 
R = 1 it is identical to the definition of Stewamon and Waechter [15]. The Bessel functions 
in this term are replaced by their uniform approximation [21] and after substituting u / ( s R )  
by p, the term is expanded in powers of l / ( s R ) .  The same is done with the quotients 
K ; ( s R ) / K , ( s R )  and I ; ( s R ) / l , , ( s R )  in the second factor of (20). Taking into account 
terms which contribute to the first two leading terms of K ( s 2 )  yields 

In this expression the variable s appears in two different combinations, as s R  or S / K .  In 
keeping with our remarks in the introduction we expand the integrand in powers of l / ( s R )  
keeping the ratio K / S  fixed. This leads to a resummation of a ( k )  to all orders in K ,  which 
is identical to the resummation performed by the method of Balian and Bloch [3] which is 
reported in section 3.1. The result is 

From this the first asymptotic terms of the smoothed level density J ( k )  follow as 

kR2 2k . 
d ( k )  = - - - lim In k(sz - iu)[$=-* 

2 7l Y" 
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where the area term k R 2 / 2  is obtained from the contribution of the free Green function to 
the trace of G. The integral over p has been performed using MAPLE. Integrating (24) 
over k yields 

f i ( k )  = - ( W Z  - 5 [I - 2  ({q- :)I+: [ 1 - 3  
4 2 

In principle, the integration of d ( k )  over k could lead to a K-dependent constant in the 
asymptotic expression of fi(k). One way to determine the constant term of the asymptotic 
fi(k) is to expand - t ( s 2 )  in all orders of l/s (now also taking into account the s/c-terms). 
Then the coefficient of the l/s2-term is identical to the constant term in the asymptotic series 
for n ( k )  [227, if expanded in all powers of I l k .  Doing this, in both cases one obtains 
1/6 - K R, and thus the constant term in (25) is correct. Equation (25) is identical to the 
formula for general shapes that will be derived in section 3, if the three terms are expressed 
by the area A = nR2,  the perimeter L = 2 z R  and the integrated curvature Jds/R(s)  = 2ir, 
respectively. 

In the appendix the corresponding result for a semicircular billiard is derived with mixed 
boundary conditions on the circle and Dirichlet or Neumann boundary conditions on the 
diameter. In this way the contribution of a 90" corner is obtained that will be used in 
applications in section 3.3. 

In figure 1 we show a comparison of the three contributions to the asymptotic expression 
(25) for the mean spectral staircase f i ( k )  with numerical data for the circle billiard with 
K = 150. All 22540 eigenvalues below wavenumber k = 300 have been included. In the 
upper figure the area term is compared to the numerical result for N ( k )  and on this scale 
one cannot see any difference. The intermediate figure shows the length term in comparison 
with the difference between the spectral staircase and the area term. The numerical data 
have been smoothed over the range of approximately 100 levels. Both curves are in good 
agreement over the whole range of k .  In order to demonstrate the effect of the resummation 
in K ,  we also plotted the length term for Neumann boundary conditions (broken curve), 
since this is the next-to-leading asymptotic term for all values of K, if no resummation is 
performed. The broken and the full curve become parallel for large values of k, but one 
can see that the resummation is necessary in order to also have a good description of the 
spectrum for lower values of k .  In the lower figure the curvature term is compared to the 
spectral staircase from which the area and length terms have been subtracted. In this case 
the numerical curbre has to be smoothed strongly (over the range of approximately 1000 
levels) since it has large fluctuations about its mean (note the different scales in the three 
figures). Nevertheless, one gets good agreement with the theoretical curve. The deviations 
near k = 300 and k = 0 (also in the intermediate figure) are due to edge effects of the 
smoothing procedure. 

21.2. The oscillatory part of !he spectral demiq We derive the oscillatory part of the 
spectral density by applying a scattering formalism and making use of the fact that there is 
a direct relation between the inside and outside problem of a billiard system. 

A solution of the scattering problem for a compact billiard system can, outside a circle 
that contains the billiard completely, be written as 
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Figure 1. The area, length and 
curvame term of the mean spectral 
staircase A ( k )  (full curves) for the 
circular billiard with Y = 150 in 
mmp3lison with the specual staircase 
N ( k )  from which the. respectively. 
stronger asymptotic terms have been 
subtracted (dotted curves). In the secand 
and third figure the dotted curves have 
been obtained by smoothing the original 
CUIYBS. The broken c u e  shows the 
length term for Neumann boundary 
conditions. 

where &.p(k) are the elements of the on-shell scattering matrix in the angular momentum 
representation, and HF(z) = J,(z) &iY,(z) are Hankel functions. For the circle (with radius 
R) ,  the requirement that $(r3 6') satisfies the boundary conditions (4) with constant K gives 
the scattering matrix explicitly. Due to the rotational invariance of the system, the scattering 
matrix is diagonal, and its diagonal elements are given by 

where q:(k)  are the scattering phases. From this equation, and from the eigenvalue equation 
for the inside problem (11), it follows that 

&(k)  = 1 k E (k,.. 1 n = 1.2, .. .) (28) 
for all 1 E 2. This is a direct relation between the inside problem and the scattering problem, 
and is a particular example of the inside-outside duality for billiard systems (231, which 
has been proved in a general form recently 1181. 

The semiclassical approximation for the S-matrix is obtained by using the Debye 
approximation for the Hankel functions (or equivalently by a WKB approximation). This 
approximation is valid for I < k R ,  with the further requirement that II - kRI is larger 
than approximately (kR)]''. These conditions have consequences on the accuracy of the 
semiclassical trace formula which is derived from it. The first condition i s  related to the 
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fact that the semiclassical approximation will be given in terms of the classical orbits 
which satisfy 1 < k R .  The consequence of the second condition is that the contribution of 
orbits to the trace formula becomes less accurate, as the angle of incidence approaches 7112 
(whispering gallery orbits). An improvement of the approximation is possible by using a 
uniform approximation for the Hankel functions [24]. 

Inserting the Debye approximation for the Hankel functions and their derivatives into 
(27) we obtain 

where 

(30) 
111 

U, = k 4 -  - 111 arccos - 
k R  and p/ = d m .  

Equation (29) determines the semiclassical scattering phases p / ( k ) .  We now make use of the 
inside-outside duality in order to obtain from these phases a semiclassical approximation 
for the density of states of the inside problem. From relation (28) it follows that ( k  0) 

where 6, is a periodic delta-function with period 2n. The wavenumbers for the circle satisfy 
I < k R ,  and since in this region the derivatives a g ( k ) / a k  are positive, the absolute value 
can be omitted fiom (31). 

Now the delta-function 8, is expressed as a sum over exponential functions. Neglecting 
the constant term in this sum, which conbibutes to the smooth part of the level density. we 
obtain 

This is equal to the general result for d,,,(k) in the scattering approach [16]. 

by applying the Poisson resummation formula 
The trace of the derivative of the nth power of the S-matrix is semiclassically calculated 

and evaluating tho integral over I by a stationary phase approximation. 
The derivative with respect to 1 of the arctan term in (29) is of order l / k R  smaller 

than dulldl when [ I  - kRI >> (kR)'13.  It remains smaller in comparison with du,/dl when 
11 - kRI approaches ( k R ) ] l 3 ,  and can therefore be neglected in the region of validity of the 
Debye approximation. The stationary phase condition for 1 is then given by 

This condition leads to a restriction of the sum over m to values for which [ml < n/2. For 
Iml = n / 2  the stationary point is at I = 0 where a(o/ /a l  is discontinuous, and the integration 
is therefore only evaluated on one side of the stationary point, which leads to an additional 
factor of 4.  

The numbers n and m can be given a physical interpretation. The stationary points of 
(34) correspond to the classical periodic orbits o f  the circle billiard, which are characterized 
by the number of reflections on the boundary n and the winding number m. The saddle 
point in.m is the angular momentum of the orbit. 
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Performing the stationary phase integration and inserting the result into (32) finally gives 

where 

This formula expresses the oscillatory part of the spectral density in terms of a summation 
over all families of periodic orbits, which are denoted by the two integers n and m. Its form 
agrees with the general semiclassical formula for integrable systems of Berry and Tabor 
[6, 71, but it has additional phases due to the boundary conditions. The first term in the 
cosine is the action along the periodic orbit kL,,,,  where L”,,,, = 2nRsin(zm/n)  is the 
orbit’s length. The phase -3nnj2 is due to n reflections on the boundary and n conjugate 
points along the orbit. In comparison to the result for Dirichlet boundary conditions there 
is an additional phase that consists of a contribution of 

for every reflection on the boundary, where sin(zm/n) is identical to the cosine of the angle 
of incidence. This is the phase that is given in (9) in the introduction. 

2.2. The rectangle billiard 

Quantization of the rectangle billiard with mixed boundary conditions has a twofold purpose. 
First, it serves as a check for the generality of the results that were obtained for the circle 
and the semicircle billiards with mixed boundary conditions. Second, as the derivation 
unfolds, we arrive at a useful expression that can be used to calculate the semiclassical 
spectral density for a class of higher-dimensional billiards with mixed boundary conditions. 

For simplicity, we quantize an L,  x L, rectangle, with Dirichlet boundary conditions 
on the edges of length L ,  and mixed boundary conditions on the edges of length L ,  (see 
figure 2). Due to separability, we readily get the quantization conditions 

k,,,L, + 2arctan = nrr n = f l ,  k2, .  . . (38) 

Figure 2. General definitions for the rectangle billivd 
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and 

k , , , L , = m r ,  m = & 1 , 1 2  ,... (39) 
where kZ = k; + k: and (+n, ?cm) represent the same quantum state. The left-hand side of 
(38) is monotonically increasing in kx,n from -CO to +CO and thus guaranteeing a unique 
solution for every n (which justifies the notation). Similar considerations also apply to (39). 

The spectral density for the rectangle can be written as 

1 m m m 

= ! [ 6 ( E  - E.,) - C6(E - E d  - CI(E - Eom) + 6(E  - Em) 
4 m.m=-m n=-m m=-m 

(40) 

where E = k2, E., = k:m = k:,n + k,?,, and we took advantage of the antisymmetry 
relations kx,-n = -kx,,,, k,.-, = -kY.,,, which are easily derived from the quantization 
conditions (38) and (39). In particular, EW = 0. Apply Poisson summation to the first term 
in (40), using the natural continuations of (38) and (39) to real m,  n: 

m 2 &(E - .Enm) = 6(E  - k& - kf,m) 
n.m=-m n.m=-m 

= 9 Jm d n d m S [ E  - k:(n) - kf(m)]ezni(pn+Qm) 
p , 9 = - ~  -m 

(41) 
The first change of integration variables ( m , n )  -+ (k,,k,) is allowed due to the 
monotonicity of n(k,) and m(k,) mentioned above. The second change of variables is 
just transforming to polar coordinates (k ,  0). such that the k integration can be performed 
explicitly, eliminating the S term. The primes in the above expression denote differentiation 
with respect to the argument. Similar considerations applied to the other terms of (40) 
finally lead to 

where 

d(ID)(k)  X . P  = n'(k) - &oS(k) 2j!:)(k) = m'(k) - S,,oS(k). (43) 

d(2D) (E)  = t dB d~'l'D)(kcosB)$'D)(ksin8) (44) 

For p = q = 0 equation (42) gives the smooth two-dimensional spectral density 
zn 

where ai'D)(k) = n'(k) - 6(k) and d f D ) ( k )  = m'(k) -6 (k )  are the one-dimensional smooth 
spectral densities (the &functions are a convenient way to represent the constant term 
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of &(lD)(k)). The ‘combination formulae’ (42 and 44) thus express the two-dimensional 
spectral density using the one-dimensional components in a simple way and rely on the 
energy decomposition relation E = k: + k; and the positive-negative antisymmetry of 
kx.+n,k,,b. ConsequentIy, it can be extended to calculations of the spectral density for 
higher-dimensional billiards, provided that the energy can be decomposed in the above 
way. In particular, it is useful for three-dimensional ‘cylindrical‘ billiards [ZZ], i.e. two- 
dimensional billiards elongated along the perpendicular axis and closed from above and 
below. For example, the cubic billiard with a variety of mixed boundary conditions can 
easily be calculated this way, including the smooth contributions of right-angle edges and 
comers, which are otherwise difficult to estimate using more general methods. If one 
assumes that the Weyl series has the general form with a volume term, surface term et 
cetera, also in the case of mixed boundary conditions, then these results can also be applied 
to billiards other than the simple ones mentioned above. 

To derive semiclassical expression for d(2D) (E) ,  we use the saddle-point approximation 
to evaluate the oscillatory integrals ( ( p ,  q )  # (0,O)) in (41). The phase appearing in these 
integrals can be divided into two parts: 

roPq(e) = 2 x  [pn(kcosO) +qm(ksin@)] 

1 pkLxcosB+2parctan - ( ‘re) + qkL,  sine 

where (ogq(e) is the phase that appears in the pure Dirichlet case and is rapidly oscillating 
in 0 for large k .  The phase $P(S), which is genuine to the mixed case, is both bounded and 
slowly oscillating and thus can be appended to the slowly varying prefactors as discussed 
in subsection 2.1 (see equation (34)). Thus, the saddle points are the same as for the pure 
Dirichlet case: 

The angles 0;; correspond to the angles between the x-axis and classical periodic orbits 
(tori) which trace the x dimension p times and the y dimension q times (see figure 2). Putting 
together the above results, we finally get the semiclassical approximation to d(2D’(E): 

where L,, = 2J(pL,)z + (qLr)Z is the length of the ( p .  q )  periodic orbit and cos e,, = 
Icos$$I = 21plL,/Lpp. In the smooth part we kept terms of all orders, since we evaluate 
the integrals exactly, but in the oscillatory part we kept only leading-order terms to be 
consistent with the saddle-point approximation. The double sum relates to the periodic tori, 
while the two single sums relate to ’boundary orbits’ [lo] that bounce along the edges of 
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the rectangle. Examining the above expression, we conclude that the effect of the mixed 
boundary conditions on the oscillatory part is simply to modify the contribution of each 
periodic orbit by a phase, which is 2arctan[(k/x)cos6'] for each bounce from a wall with 
mixed boundary conditions, where R is the angle of incidence with respect to the inside 
pointing normal. The same rule also applies to the boundary orbits, for which 6' is either 0 
or z/2. This result, as well as the modifications to the smooth spectral density (length term 
and right-angle Dirichlet-mixed comers) are equivalent to and consistent with the results 
that were obtained above for the circle (see equations (24) and (37)). 

3. General b i a r d  systems 

We now consider general smooth two-dimensional billiards. A very convenient method for 
the treatment of billiard systems are boundary integral methods since they reduce the two- 
dimensional billiard problem to an effectively one-dimensional problem along the boundary 
of the billiard. However, as has been discussed in the introduction, in the case of mixed 
boundary conditions one encounters the difficulty that the integral kernels have a singularity, 
which makes a direct perturbation expansion impossible. One possibility to solve this 
problem, is to apply a transformation to the integral equation, which leads to an non- 
singular kemel. This corresponds to a resummation of the equation in all orders of K and 
we will use this method in order to derive the smooth part of the level density [3]. For 
the oscillatory part of the level density, however, we choose twu different approaches that 
avoid the problem of singular integral kernels. We first apply methods of scattering theory 
in order to obtain the semiclassical approximation for convex chaotic billiard systems. For 
the calculation of the scattering matrix the Kirchhoff approximation (presented in [16]) i s  
extended to mixed boundary conditions. We further derive the semiclassical approximation 
for a concave billiard, the Sinai billiard, by the KKR-method. 

3.1. The smooth pari of the spectral density 

In reference [3] Balian and Bloch derive the asymptotic form of N ( E )  for an arbitrary 
smooth three-dimensional billiard with mixed boundary conditions. We use their method 
in order to obtain the corresponding two-dimensional result. Our notation differs from that 
of Balian and Bloch in that the Green function and the normal derivative have a different 
sign. 

Consider a two-dimensional domain D with area A and a smooth boundary of length 
L. The Green function of the Helmholtz equation for this domain is determined by the 
differential equation 

(Vz -I E )  G(7, i', E )  = S ( i  - 7 )  

(K + a,+) G( i ,  7 ,  E )  = 0 

(48) 

(49) 
It is related to the smoothed spectral density &(E) ,  which has Lorentzian peaks of width Y 

at the energy values E,, by 
1 

with the boundary condition 

i E c I 

(50) d,(E) = -- /dzi[Im G(?,?', E +iu)]i.,i . 
T A  

For the derivation of the largek behaviour of the Green function the differential equation 
(48) and boundary condition (49) are replaced by an integral equation. This is done by 
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representing the Green function G(i. i‘, E )  as the sum of the free Green function and a 
single-layer potential : 

G(i ,  7)  = Go(;. 7) + ds, Go(?, ?&(Fe, i’) (51) J ,  

s, 
with a density p(?p, 7’) which is determined by 

pCip, i’) = Z(K + ai#) Go(iB, 7) + 2 dse [ K  + &ip1Go(ip, im)p(ia,  7‘). (52) 

For brevity of notation, the energy dependence of the Green functions and the density p 
will be omitted, and Greek indices will denote coordinates on the boundary. 

For Neumann boundary conditions ( K  = 0) the integral equation (52) can be solved by 
iteratively replacing the potential p in the integral term of (52) by the whole expression for 
p. For K # 0 this cannot be done since the Green function Go(?,, i& in contrast to its 
normal derivative, has a (logarithmic) singularity at Fa = ?B. For that reason, the integral 
equation has to be transformed into a different integral equation, for which the kernel is 
uniformly bounded. This is done by introducing an auxiliary Green function r(i=, ?s) which 
is defined on the boundary C by 

T ( i m , i p )  - 2 K s , d ~ , c ~ ( ~ . . i y ) r ( i , . ~ ~ )  =A(?@ - i s ) .  (53) 

J 
Multiplying equation (52) by r(ia, ?p) and integrating over 

&(Fa, i’) = 2 

one obtains 

dsp r(ic, i p )  [K + &,]Go(?,,, 7) 

(54) + 2  dspds, r ( i ~ , i p ) a i p G o ( i B , ~ ~ ) p ( i ~ , i ’ ) .  I 

‘ s ,  

This equation is now solved by a perturbation expansion and the result is inserted into (51). 
One obtains 

G(?,?’) = GO(?, 7 )  + 2 ds, dsp Go(?, ie) r(ia, ?‘p) (K  + a;#) i’) s, 
+4 ds,dsgdsydsd%di. Fa) r( ia, ?p) ase 

Go(ip, 7,) r(i,, i d  (K  + ai8) Go(is. i’) + . . . . 
Inserting this into (50) yields the following expression for the level density: 

(55) 

~ ( i ~ ,  i p j  = p i G o ( i a ,  i )  CO(?, ip)  (57) 

and the energy of the Green functions is given by E+iu. In contrast to the three-dimensional 
calculation, the introduction of a convergence factor is not necessary here since the integrals 
are convergent. 
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3.1.1. Theperimefer ferm. The evaluation of the integrals in (56) is based on the fact that 
the functions Go and r are short-range functions when the energy E is large. In a first 
approximation it is assumed that the range is smaller than the smallest radius of curvature of 
the boundary and the boundary is locally replaced by its tangent. In this approximation 
only the first integral term in (56)  contributes, since &j,Go(ip, FV)  vanishes if the curvature 
of the boundary is zero. One proceeds in the following way: the coordinates Fa and are 
replaced by 

(58) 

and the integral over is evaluated along the tangent of the boundary at the point i,. 
Along this tangential line the functions Go and r are translational invariant and for that 
reason it is convenient to introduce the Fourier transform along the tangent: 

. . . . . .  rt = r, - rp i, = + ?a) 

f(p) = Jdse"prf(s) f(s) = - 2n ' J  dpeiP'f(p). (59) 

In terms of the Fourier transforms the contribution to the level density can be written as 

The calculation of the Fourier transforms of the functions GO, r and F is done exactly as 
in the three-dimensional case of Balian and Bloch. For that reason, here we give only the 
results: 

where u ( p )  = m, k ,  = and 

Those of the functions in the above equations which only depend on one parameter are. 
the Fourier transforms of functions with arguments in the plane, which are translationally 
invariant along the plane. &p, z) is the Fourier transform of Go(?,, i )  and z is the distance 
of i from the plane. The expressions in (61) and (62) have exactly the same form as in 
the three-dimensional case, the difference being that p is now a scalar instead of a two- 
dimensional vector. The results (61) and (62) are inserted into (60) and the limit U 4 0 is 
performed, yielding the first asymptotic terms for the mean level density. Multiplying the 
result by 2k gives the result for the mean level density in terms of the wavenumber k :  

3.1.2. The curvufure term The next term in the asymptotic expansion of d ( k )  is obtained 
by including those corrections to the tangent approximation which are linear in l / R , ,  where 
R, is the radius of curvature at F,. Such corrections exist for F(?=, i o ) ,  a,irF(Fu, i s )  and 
a,i,Go(i,,?p), whereas for C i ~ ( ? ~ , ? p )  and r(iu,?p) the first corrections are quadratic in 
I/R, and can be neglected. The integrals in (56) are expressed in terms of the Fourier 



Semiclassical quantization of billiards 5057 

transforms of the Green functions and their corrections and the next asymptotic term for 
the energy level density follows as 

The Fourier transforms of the Green functions and their corrections can again be derived 
exactly as in the three-dimensional case [31 and give the result 

(65) 
These expressions are slightly different from their counteqmts in three dimensions, since 
theu derivation involved the divergence of p which depends on the dimension in which ir 
is calculated. The terms in (65) are inserted into (64), the limit U --f 0 is performed and 
the result is multiplied by 2k in order to obtain the next term in the asymptotic expansion 
of d ( k ) .  The result is 

r 7 

1 1 + 2($ - [ 1 + (X"]''Z 

;[I + ($)2]3'2 

An integration over k gives 

+ + 3  m - '1 s,$ + . . . 
12n Jz$ 

This is the final result for the leading three asymptotic terms, the area, perimeter and 
curvature term, for the mean spectral staircase for an arbitrary smooth two-dimensional 
billiard with mixed boundary conditions. For the determination of the integration constant 
in the integration of (66) see the discussion in the section on the circle billiard. Equation (67) 
is identical to (25) when applied to a circle. Furthermore, in the limits K -+ 00 and K -+ 0 
equation (67) gives the correct expressions for the case of Dirichlet and Neumann boundary 
conditions. 

3.2. The oscillatory part of the spectral density 

The oscillatory part of the spectral density for chaotic billiards with mixed boundary 
conditions (4) is considered in this subsection. We use the scattering approach, in which 
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the billiard is viewed as an obstacle for a scattering problem and use (32) for d,,(k). The 
scattering mahix is obtained using the Kirchhoff approximation in a way which applies to 
strictly convex billiards. The approximation assumes that the incoming wave locally sees 
a straight line at the scattering point. The case of Dirichlet boundary conditions is given in 
detail in [16]. For mixed boundary conditions the additional phase (9) is again recovered. 
This phase is slowly varying and in saddle-point approximations its value is therefore taken 
at the saddle point (in section 2.1 this point is justified for the circle). 

We consider the scattering solution which consists of an incoming pIane wave $ in (? )  = 
eizf'? (with momentum kj  and direction 0,) and a scattered wave $sea,(?). The scattering 
amplitude f (0i. 0,) to an outgoing direction 0, is connected to the asymptotic form of the 
scattered wave at large r by 

The momentum in the outgoing direction is denoted by E / ,  so that k = lkil = Ik//. Using 
Greens theorem the scattering amplitude is expressed as a boundary integral: 

f ( e j ,  e,) = -: ~ d s [ a ~ * s , , ( q  + i(if . i ( ~ ) ) ~ , ~ ~ r ( ~ ~ e - ~ ~ ~ ~ ~ .  (69) 

This expression is exact, but involves the knowledge of both $3ca,(i) and 3;$sc& on the 
boundary. The boundary condition (4) gives one linear combination of these two quantities, 
another is found by using a short-wavelength approximation. 

Given an incoming direction Of,  the billiards boundary is divided into an illuminated 
part (Xi)  and a shaded part (&), dividing the expression for the scattering amplitude (69) 
into two parts, f = +h. For the shaded part the approximation is introduced by arguing 
that the wavefunction is vanishingly small close to Xs and hence $(r )  % a,i$(i)  2 0. 
This results in exactly the same expression as for Dirichlet boundary conditions, giving a 
semiclassical approximation for the forward scattering peak [16]. The scattering matrix (in 
the angle representation) is then connected with the illuminated part only. 

The short-wavelength approximation assumes that the behaviour of Ihe scattered wave 
at a point on the illuminated boundary is determined by specular reflection off that point 
and that the surface is locally a srraight line. 

We first consider a wave scattering o f f  a straight wall, with a normal ri pointing towards 
the side where the scattering process is taking place. The incoming wave is given, as before, 
by $fa(?) = The scattered wave at any point ? on the wall and its normal derivative 
at that point. are expressed in terms of the incoming wave by 

(70) 
= i(Zi . i)e+$;"(i). (71) 

$sca,(i) = -e+ *;n (3 

Imposing the boundary conditions at the wall, the additional phase 4 is determined to be 

where e is the angle of incidence and is just the additional phase (9) which appears for 
mixed boundary conditions. Note that (71) is valid for a wall at any angle or position. 

We use the result for the straight wall in (69) to obtain the approximation for the 
scattering matrix 
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where 

The integral (73) is evaluated using a saddlepoint approximation, where the additional 
phase +(?) is taken at the saddle point. The saddle point i o  for a general convex billiard, 
is the point of specular reflection for a trajectory with incoming direction Bi and outgoing 
direction 0,. The scattering matrix is finally given by 

where R ( i )  is the radius of curvature and-@(?) is given by (74). Note that, since 70 is 
the point of specular reflection, we have k, . A(;o) = -it . A(F0) = k sin (16'1 - Qil/2). 
The scattering matrix for the circle may be obtained directly using R(?o) = R and 
i o  = RA(70). By transfonning to the angular momentum representation, using a saddle- 
point approximation, we recover (29). 

The oscillating part of the spectral density, given in the scattering approach by (32), is 
evaluated using the saddle-point method, and the additional phase @ is taken at the saddle 
point. The calculations for Dirichlet boundary conditions [I61 may then be followed, with 
the appearance of the additional phases being the only difference. Assuming that all periodic 
orbits are isolated, we obtain the Gutzwiller sum 

where the sum is over primitive periodic orbits y with repetitions m. Each primitive orbit 
has a length L ,  and a monodromy matrix My. The number of reflections along the orbit is 
nY and uy is the maximal number of conjugate points along the orbit (the Maslov index). 
The only difference from the formula for Dirichlet boundary conditions is the appearance of 
the additional phase a,, which is just the sum of the additional phases accumulated along 
the orbit: 

where 0; are the angles of incidence at the reflection points along the orbit which are 
labelled by i .  

3.3. The spectral den& for the Sinai billiard 

In this subsection we describe very briefly the semiclassical quantization of the two- 
dimensional Sinai billiard (disc of radius R embedded inside a square of side L )  with 
mixed boundary conditions (4) on the disc. For this purpose we follow Beny 191 and use 
the KKR method 125-271. We fist unfold the billiard into an infinite lattice and consider a 
general potential with circular symmetry and range R in the centre of each cell (2R c L). 
Using the Green theorem and taking advantage of the translational and circular symmetries, 
we arrive at a set of linear equations, that have a non-trivial solution (i.e. an eigenvalue of 
the billiard) if 
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where alp are 'structure constants' of the lattice that are independent of the potential and 
pf(k) are the scattering phase shihs that include all the information about the potential. For 
mixed boundary conditions the phase shifts are given by 

which is different from (27) for the circle, due to 8; = -8, in the Sinai billiard case. 
Semiclassically we have 

(80) 
where $(k)  are the phase shifts for Dirichlet boundary conditions on the disc and 
@, = 2arctan[(k/rc)cosBJ. 01 is the angle of incidence to the disc of a classical particle 
having angular momentum 1. 

To calculate the expression for the spectral density d ( k )  one considers ( - I /R)  log((k)  
( { ( k )  can be made real [9]). Then one uses the matrix relation log det = Tr log and formally 
expands the logarithm in a Taylor series. To get the semiclassical approximation of d(k) ,  
Poisson summation is used and the resulting integrals are evaluated by using saddlepoint 
approximation term by term. (The detailed and rather long derivation is one of the main 
subjects of [9].) Substituting p~ in (78) and performing these steps, we immediately get a 
semiclassical expression for the Sinai billiard with mixed boundary conditions that contains 
no expansions in powers of K .  Thus ' K  is resummed to all orders' by the KKR determinant 
and is included only through the phase shift 41. Moreover. due to the slow variation of @I 
as explained above (see subsection 2.1), the modifications are particularly simple and result 
in 

W )  = #(k)  - M k )  

where A , ,  are the semiclassical amplitudes that appear in (76) and ny are the number of 
collisions of the primitive periodic orbit y with the billiard walls. Note the fact that for the 
Sinai billiard the Maslov index uy is always 0. The inner sum is over collisions with the 
disc (8; are angles of incidence) and contains the modifications to d , , ( E )  due to mixed 
boundary conditions. The x-independent term &(k) contains the non-generic contributions 
of the 'bouncing ball' orbits [9, 10,281 and will be further discussed below (section 4). It is 
interesting to note, that although in (SO) the sign of the additional phase shift 4) is opposite 
to the that of the circle (and more generally the convex) billiard, the final results for both 
&E) and d,,,(E) agree in signs with the previous cases, which emphasizes the generality 
of the modifications implied in (81). 

4. Application of mixed boundary conditions to the spectral diagnostics of the Sinai 
billiard 

The spectral density of the Sinai billiard, in either two or three dimensions, and in the 
presence of mixed boundary conditions on the inscribed scatterer (either disc or sphere), 
can be written as 

(82) d(k; b, (U) = J(k;  b, a) +d,,(k; 6, a) 
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d d k ;  b , a )  =d,&;b,a)  +dbb(k)+dron(k;b,or) (83) 

where 2 is the smooth density, dgrn comes from contributions of generic, isolated and 
unstable periodic orbits (see equation (SI)), dbb represents the contributions of the non- 
generic ‘bouncing ball’ (BB) families of marginally stable orbits that do not collide with the 
scatterer [IO. 9, 281, and d,, contains the non-generic contributions due to periodic orbits 
which are tangential to the scatterer (see figure 3). When one is interested in the generic 
part of the spectral density, one must find a reliable and accurate method for the elimination 
of the BB and tangent contributions. This is not an easy task, since the contribution of the 
leading-order BB families are O(k’lz) stronger than that of an isolated periodic orbit in the 
two-dimensional case [lo], and O(k’)  stronger in three dimensions. In the semiclassical 
limit this may amount to a very large factor, so that to identify the contributions of a single, 
generic orbit one must subtract the BB contributions in an accurate and reliable way. This 
problem is especially acuE when one considers the cosine transform of the oscillating part 
of the spectral density-the length spectrum: 

D(x;  6, or) - 1 dk d,,(k; b. or) cos(kx) . (84) 
kmax 

Here, due to the finite range of k values, the length spectrum is composed of peaks with a 
finite width, and the contribution of the BB families might overlap and obscure the peaks 
due to unstable, isolated periodic orbits. This problem is very well demonstrated in the top 
part of figure 4. At the length x = 2 there exist a BB family and an isolated periodic orbit 
(a two-fold repetition of the shortest orbit of length 1). The latter has an amplitude which 
is smaller even than that of the peak at x = 1. 

In order to eliminate the non-generic contributions, it is natural to seek analytic 
expressions, and to subtract them from the spectral density. Indeed, for the two-dimensional 
stadium billiard the contribution of the (single) BB family were calculated by Sieber et uf 
[IO], and were successfully applied in the spectral analysis. These calculations become, 
however, much more intricate for the Sinai billiard, in particular for three dimensions. 
Instead of a single BB family as in the stadium, the Sinai billiard admits a rich variety of 
BB families, especially in three dimensions [291. Moreover, in three dimensions the total 
(geomemcal) measure of each family of BB is difficult to evaluate. Tangent orbits (which 
are not encountered in the stadium billiard) require a special treatment, which is not yet 
available. 

.._............ ............-.. M 
Figure 3. Tangent periodic orbits in the two-dimensional Sinai billiard. 
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Figure 4. Top: length spenra 
of quarter of Ihe two-dimensional 
Sinai billiard, L = 2, R = 
0.5, with Neumann and Diriehlet 
boundary conditions on the disc, 
Banom: difference between Neu- 
mann md Dirichler length SpecUa. 
lsoiated periodic orbits are indi- 
cated by venical lines and bounc- 
ing baJl manifolds are indicared by 
daggers. 

Facing all these difficulties, we were forced to introduce a new method for the 
elimination of the BB and tangent orbits. It makes use of the extra freedom which is 
gained by the variation of the boundary conditions. As a matter of fact our interest in the 
semiclassical theory of billiards with mixed boundary conditions stemmed originally from 
this particular application. 

The main idea of this method is to look at differences of spectral densities obtained 
with boundary conditions which differs only on the scatterer. Since the BB orbits do not 
collide with the scatterer, they are insensitive to changes of the boundary conditions on it. 
Therefore, their contributions will be eliminated in the difference. Here we shall discuss 
two convenient schemes. In the first, we shall subtract the spectrum with Dirichlet boundary 
condition on the scatterer from the spectrum with the Neumann condition on the scatterer. 
The difference will be called the N-D spectrum. 

Taking into account the explicit expressions for dos, for Neumann and Dirichlet boundary 
conditions we get from (81) 

dN,.(k) - dDj , (k)  = (smooth part) + zC)A,,, cos(mkL, - m ncn) + cj;an (85) 

where n; is the number of collisions with the straight boundaries, and the prime over the 
sum indicates that only periodic orbits with an odd number of collisions with the scatterer 
should be considered. d;an is the residual contribution of the tangent orbits. The BB 
contribution &(k)  is completely eliminated by the subtraction. This result is valid in 
the semiclassical approximation, and its applicability in practice should be tested. This 
was done by analysing numerically the two-dimensional quarter of a Sinai billiard with 
L = 2. R = 0.5. Our numerical database consists of the lowest 5700 energy levels [30] 

Y.m 
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in the k-range 0 < k, -= 300, for both Dirichlet and Neumann boundary conditions on the 
disc. 

In figure4 (top) we present the two length spectra for Neumann and Dirichlet boundary 
conditions on the disc and one clearly observes the large contributions of the BB families, 
which have lengths of 2 and 2-& 191. The change of sign between Dirichlet and Neumann 
boundary conditions due to an odd number of bounces on the disc is evident, e.g. for the 
shortest orbit of length 1 which bounces only once from the disc. There are also peaks 
that do not change sign, as expected. The N-D spectrum is shown in figure4 (lower part). 
The peaks corresponding to the BB are greatly diminished, and generic periodic orbits can 
be distinguished more easily. There are, however, some drawbacks to the N-D analysis. 
The fist one is that it eliminates half of the generic contributions to the spectral density, 
namely those orbits that bounce an even number of times from the scatterer (see equation 
(85) ). This can easily be rectified by comparing spectra with other boundary conditions 
on the scatterer rather than the special N-D analysis. A more serious drawback is due to 
the contributions of tangent orbits. They have the same length as the BE, and their residual 
contribution can be clearly seen in figure4 for x = 2,2& It was found numerically to be of 
the same order in k as for isolated orbits. This gives an indication, that in three dimensions 
such tangent orbits, that form one-parameter families, are likely to give contributions of 
order k'n.  which can obscure a significant part of the generic contributions. 

The second, and more powerful comparison method consists of taking the derivative of 
d(k; b,  01) with respect to 01 at 01 = 0. Using equations (9). (81) and (83) we get 

a -  
a@ = -d(k; b, 0111 + CAy., sin (mkL, - m ny.) 

F(=o y.m 

The term dbb dropped trivially, and the oscillatory contributions are now multiplied 
by the new prefactors xi:, cosei. These prefactors vanish (only) for tangent orbits 
(8; = n / Z ,  i = 1, , . . , n;) .  If we now assume that the tangent orbit conmbutions behave 
similarly to those of the periodic orbits, it will follow that their contributions will also be 
eliminated. Hence, the 01 derivative of the spectral density consists of generic contributions, 
exclusively. The validity of this assumption was recently verified to leading order both 
analytically and numerically [31]. 

To examine (86) we use instead of the plain length spectrum (84) a Gaussian modified 
one with the kernel 

or 

The parameters t and a were chosen, such that for the calculated spectra, the integration 
limits can be safely taken to &CO, thus avoiding undesired boundary effects. Integrating 
both sides of (86) with this kernel, one gets 
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where 

Here we used the explicit expression for the smooth spectral density of the two-dimensional 
quarter Sinai billiard including the comer and curvature terms. To check (88), we calculated 
numerically the derivatives of energy levels with respect to 01 by using finite differences for 
01 = 0 and IY = 0.0005n/2. In  both cases b = 200 and 0 k, < 300. In figure 5 we 
present the quantum results together with the semiclassical predictions of (86) which consists 
of contributions due to generic isolated and unstable periodic orbits (and their repetitions) 
only. The agreement between the quantum and the semiclassical results is good throughout 
the entire length interval (except for a few deviations which are due to special effects which 
will be discussed latter). This demonstrates the power of the derivative method, and the 
general success of the semiclassical theory. 

A more detailed examination of figure 5 reveals the following details. At the lengths 
2 and 7.d which correspond to the shortest BB families and their limiting tangent orbits, 
we can observe very small structures. Comparing them to the corresponding peaks in the 
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N-D spectrum, we see that the tangent orbits behave as expected. The very small peaks 
that nevertheless exist there, are attributed to higher-order corrections to the semiclassical 
approximation and to the small contribution of the second repetition of the shortest periodic 
orbit of length 1. Other BB families cannot be separately examined for the given k range due 
to the clustering of periodic orbits (the total number of periodic orbits grows exponentially 
with their length). 

It is important to note that the quality of the semiclassical theory is uniform throughout 
the length domain. even at longer lengths, where individual periodic orbits cannot be 
resolved. This is a very demanding test for the semiclassical theory since it involves the 
interference of dozens of periodic orbits per wavelength. To get such a good reconstruction 
of the exact length spectrum requires a very accurate evaluation of the individual amplitudes 
and phases. 

The largest discrepancy between the numerical data and the semiclassical theory is 
seen in the vicinity of x = 6.21. At this length there exists a triplet of unstable periodic 
orbits which are very close to tangency with the disc. It would be eliminated by pruning 
if the radius of the disc was increased beyond R = 0.555. Other points in the length 
spectrum where deviations of the semiclassical theory from the numerical length spectrum 
can be observed are also close to bifurcations of this type with two or three periodic orbits 
becoming simultaneously tangential to the disc. Therefore we suspect that the deviations 
have their origin in the failure of the semiclassical theory in its present form in the vicinity 
of tangent orbits. 

The method presented above was recently applied in the analysis of the 3D Sinai billiard. 
There, the length spectrum is entirely overwhelmed by BB contributions. One can study the 
contributions of isolated periodic orbits only after the spectrum is analysed by the methods 
explained above. The detailed analysis of the 3D Sinai billiard will be presented elsewhere. 
Finally, we would like to note that the method presented here can be applied in many 
variations, whenever a particular set of orbits is of particular interest, and one wishes to 
suppress all other contributions. 

5. Parametric spectral statistics 

Random matrix theory has been successful in describing universal properties in the spectra 
of a large variety of single systems. These include classically chaotic systems as well 
as disordered mesoscopic systems. There is now an increased interest in considering not 
only single isolated systems but also systems that depend on an external parameter and in 
describing correlation functions in this parameter and statistics that depend on the sensitivity 
of the energy levels to the change of the parameter [Il-141. 

Two very often considered quantities are the velocity and the curvature distributions, 
i.e. the distributions of the first and second derivatives of the levels with respect to the 
parameter. For these quantities several theoretical results exist. The velocity distribution 
P ( u )  is a Gaussian for random matrix ensembles. It has been shown by Gaspard et al 
[ l l ]  that the asymptotic distribution for large curvatures is universal. Subsequently, this 
behaviour was verified numerically for several systems [32, 33, 131. Formulae for the 
complete curvature distributions for the CUE, GOE and GSE of random matrix theory were 
conjectured by Zakrzewski and Delande [13] based on detailed numerical examinations. In 
addition, it was suggested that deviations from these distributions in chaotic systems could 
be taken as a measure of the degree of scarring in this system 133, 131. It has been proved 
recently that the conjectured distributions are indeed the exact distributions for the random 
matrix ensembles [34-37]. 
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In this section we examine the velocity and curvature distributions for the Sinai billiard 
with mixed boundary conditions on the dispersing arc. As has been mentioned in the 
introduction, it is a special feature of this parameter dependence that it restricts only to the 
quantum system, whereas the corresponding classical system is parameter independent. As 
parameter we take the quantity a of (5 )  with fixed b = 200. The velocities are 

where xn(a) = fi(kn(a); b ,  a) are the unfolded energy levek. We scaled the first derivatives 
ax,/aa by their local standard deviation, since this standard deviation is not constant with 
increasing energy. The brackets ( . ) x  denote an average over the levels xn in a local interval 
around the value x .  The scaled curvatures are defined as 

where v classifies the corresponding random matrix ensemble. It is equal to one for GOE. 
which is appropriate for systems with time reversal symmetry. The distribution of curvatures 
for GOE is given by 

1 1  
P(c)  = - 

2 (1 + c2)3/2 ' 
We compare the numerical distributions for the Sinai billiard to the random matrix 

results and discuss the deviations that occur, especially in the context of the scarring of 
wavefunctions in the system. The calculations were done for the quarter Sinai billiard 
which has two symmetry classes, odd and even. The eigenfunctions of these symmetry 
classes are solutions of the Helmholtz equation for the fundamental region of the Sinai 
billiard, which is drawn in figure 7 with thick full curves, with Dirichlet (odd) or Neumann 
(even) boundary conditions along the line y = x ,  mixed boundary conditions along the 
circular part of the boundary and Dirichlet boundary conditions along the remaining two 
straight sections of the boundary. As in the previous section R = 0.5 and L = 2 and for 
these parameter values there exist two families of bouncing ball orbits. For the numerical 
analysis the energy levels with a wavenumber in the range 100 < k c 300 were used. 
This corresponds to approximately 2500 levels in each symmetry class. The statistical 
distributions were evaluated by averaging over the two symmetry classes. 

5.1. Non-generic features in the parameter-dependent energy spectrum 

Figure 6 is a plot of the wavenumbers k,, of a part of the spectrum as a function of the 
parameter a for the two symmetry classes of the quarter Sinai billiard. There is a mean 
decrease of the levels with increasing a which is due to the a dependence of the mean 
number of energy levels p(k) .  A striking feature in figure 6 is that one can distinguish 
apparent horizontal lines. These lines consist of almost straight pieces which are interrupted 
by avoided level crossings. As will be argued below these lines can be athibuted to the 
existence of the families of bouncing ball orbits. We discuss these lines in more detail since 
they lead to deviations in the velocity and curvature distributions from the random matrix 
theory. Similar apparent lines have also been found in various other systems (see e.g. [38]) 
and also in experiments [391. 

The lines are regularly spaced and they can be divided into two families. The first 
family appears at the same positions in the spectra of both symmetry classes. The lines 
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Figure 6. The wavenumben k.(a) 
in the range 190 c k. < 200 as 
functions of the parameter a for the 
desymmevized Sinai billiard, for odd 
(left figure) and even (right figure) 
symmetry. The uiangles indicate 
&envalues of WO rectangular billiards 
(dark ui?.ngles-fim farmly, empty 
uisngles-smnd family), as discussed 
in the text 

X 

Figure 7. me ( x ,  y)- and (U. u)coordinate systems for a 
description of the WO families of bouncing ball orbits in 

fundamental region of the Sinai billiard is drawn with hick 
lines. 

the qoaner Sinai billiard wilh R = 0.5 816 L = 2. Tne 

actually appear as double lines where the upper line is less pronounced than the lower line. 
The positions are roughly given by k = nn, where n is a natural number (full triangles 
in figure 6) .  In the case of the second family of lines there is a difference between the 
two symmetry-classes. One can distinguish horizontal lines at the approximate positions 
k = n n / a v  but they only appear for odd integers n in the odd symmetry class and for 
even integers n in the even symmetry class (empty triangles in figure 6). Although we 
did not calculate wavefunctions, we strongly suspect that the horizontal lines correspond 
to wavefunctions that are mainly concentrated (scarred) along one of the two families 
of bouncing ball orbits and that these states are not strongly influenced by changing the 
boundaty conditions on the circular part of the boundary. Under these assumptions the 
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actual position of the lines and the difference between the two symmetry classes can be 
explained by a very simple model, namely by approximating the wavefunctions by the 
superposition of two eigenfunctions of appropriate rectangular billiards. 

We first consider the position of the lines in the vicinity of a = 0. Later on, we shall 
show that the lines are not sfrictIy horizontal, but that they drop slightly as a approaches 
n/2. We start with the first family of lines. It is convenient to discuss them in the quarter 
Sinai billiard instead of the fundamental region. We assume that the wavefunctions that 
correspond to these lines are scarred along the first family of bouncing ball orbits. These 
are orbits that are parallel to the x-axis or the y-axis in the coordinate system shown in 
figure 7, i.e. they occupy the region of the upper shaded rectangle in figure 7 and the region 
of another rectangle that is obtained by reflecting the first rectangle on the line y = x. 
We then express the wavefunctions by a linear supesposition of a function f ( x ,  y) and 
its mirror image f(y, x), where f ( x .  y) is concentrated along the first of the rectangles 
only. The wavefunctions of the two symmeny classes are then given by f ( x ,  y) ~ f ( y ,  x ) .  
This decomposition in terms of f (x ,  y) and f (y. x) is, of course, only possible within an 
approximation since it implies that both symmetry classes have the same eigenvalue. 

The fact that the eigenvalues of the wavefunctions are only slightly influenced by the 
change of the boundary conditions on the circular part of the boundary points to a small 
excitation of the function f (1, y )  in the x-direction and a high excitation in the y-direction. 
For that reason, we determined its eigenvalue by an adiabatic approximation in which the 
high excitation in the y-direction and the low excitation in the x-direction are separated. 
In the energy range considered, the results differ only slightly from the eigenvalues of 
the rectangular billiard in figure 7 with Diricblet boundary conditions. For simplicity 
we therefore restrict the discussion to the eigenvalues of this rectan ular billiard. The 
wavenumbers of its eigenvalues are given by kn.,,, = n + nz/az + m2/b2, where n and m 
are integers and U = 1 and b = 1 - R are the lengths of its sides. The wavenumbers km,m 
provide a more detailed description of the positions of the lines than the rough estimate 
k = nn. The values of k",,,, are marked in figure 6 for n = 61 to 63 and m = 1 and 2 
by full triangles. As one can see, they agree well with the position of the horizontal lines. 
Scarred wavefunctions that correspond to higher values of m might also exist, but they are 
more sensitive to a change of the parameter a and therefore the corresponding lines cannot 
be clearly distinguished in the spectrum. 

For the consideration of the second family of lines we introduce new coordinates 
U = (x  - y)/2 and U = (x  + y)/2, and consider a region that is bounded by the lines 
U = 0, U = 1, U = 0 and U = 1 and two circular arcs as shown in figure 7. Let us denote 
this region by D .  It contains four copies of the fundamental region of the billiard which 
is indicated by thick full curves. The second family of bouncing ball orbits runs along 
lines of constant U or constant U. In order that a wavefunction in the domain D is also an 
eigenfunction of the two considered symmetry classes of the fundamental region, it has to 
satisfy Dirichlet or Neumann boundary conditions, respectively, on the straight sections of 
the boundary of D and additionally it has to vanish on the diagonals U = U and U = 1 - U. 

We now consider a wavefunction which is mainly concentrated along the family of 
bouncing ball orbits that is parallel to the v-axis. This region is indicated by the tilted 
rectangular region in figure 7. Again we try to approximate the energy of this scarred 
wavefunction by an eigenvalue of the rectangular billiard. Depending on the symmetry 
class considered, the eigenfunction f ( u ,  U) of the rectangular billiard bas to satisfy Dirichlet 
or Neumann boundary conditions on its short sides and Dirichlet boundary conditions on 
its long sides (we consider the case a = 0). From f ( u .  U) one can obtain a wavefunction 
@(U. U) in the fundamental region, i.e. one which vanishes on the lines U = U and U = 1 -U, 
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bydefining@(u,u) = f ( u , u ) - - f ( u , ~ ) a n d r e q u i r i n g t h a t f ( ~ + z , ~ - z )  = f ( $ - z  ' 2  i+z). 
A consequence of the last condition is that the function f (u ,  U) must have the same parity 
with respect to reflection of its first coordinate at U = $ as with respect to reflection of the 
second coordinate at U = f . 

We now consider the odd symmetry class of the quarter Sinai billiard. For this case 
the function f(u. U) is given by f ( u .  U) = c ~ , ~  sin[nnu] sin[nm(u - r ) / ( l  - Zr)], where 
c",,,, is a normalization constant and r = R/& is the radius of the circle in the (U, U)- 

coordinates. The corresponding wavenumbers are km,m = irdnz/a2 + m 2 / b 2 / f i  where 
a = 1 and b = (1 - 2r) and the factor 4 has its origin in the Jacobian determinant of 
the coordinate transformation. The symmehy condition that f ( u ,  U) has to satisfy restricts 
the possible values of m and n.  It is satisfied if either m and n are both even or if they 
are both odd. As a consequence, the lowest excitation m = 1 in the u-direction is only 
possible, when n is an odd number. In the left-hand graph of figure 6 the wavenumbers 
k,,,m are indicated by open triangles for the values n = 87 and 89 and m = 1 and close 
to these positions one can see horizontal lines in the spectrum. The positions of the lines 
are actually slightly below the values of k,.,, possibly because the wavefunctions spread 
slightly beyond the rectangular region. The lines are less pronounced than the lines of the 
first family and already for the cases m = 2, which correspond to even values of n,  there 
are no clear lines in the spectrum. 

For the even symmetry class of the quarter Sinai billiard, the function f (U. U) is given 
by f (U. U) = c " , ~  cos[nnu] sin[xm(u - r ) / ( l  - Zr)] .  Now the symmetry condition for 
f ( u ,  U) requires that m is even if n is odd and vice versa. In the right-hand graph of 
figure 6 the lines of the second family for m = 1 have the same qualitative properties as 
in the left-hand graph, with the difference that they now appear for even values of n. The 
open triangles in the right-hand graph mark the values of ke,,  for the values n = 86 and 
88 and m = 1. 

Up to now, we considered only the position of the horizontal lines in the spectrum 
near the parameter value 01 = 0. We now discuss the fact that the lines are not strictly 
horizontal but that they drop slightly when 01 is increased. In order to describe the lines 
more accurately over the whole 01 range we again use the simple model of the two rectangular 
billiards in figure 7. This time we impose mixed boundary conditions on those sides of the 
two rectangles that are tangential to the circular arcs in figure 7. The resulting wavenumbers 
kn,,,,(ff) (for the appropriate values of n and m )  have the following properties. They are 
monotonously decreasing functions of 01, yet the decrease is very slight except near 01 = n/2, 
where it becomes stronger. At (Y = n/2 the Lines have a distinctive negative curvature and 
negative slope. The model of the rectangular billiard is not good enough to give an exact 
description of the actual position of the lines in the spectrum, but the qualitative behaviour 
of the functions kn.m(rY) that is described above can also be seen in the spectrum. 

5.2. The velocity and curvature disrributiom 

We now come back to the distribution of velocities and curvatures and first consider the 
results for the parameter value 01 = 0. The velocity distribution is shown in figure 8 and 
is compared to a Gaussian of the same mean value and standard deviation. One notices 
that the distribution is not well approximated by the Gaussian curve. It is asymmetric and 
it has an excess of large velocities. This deviation from the random matrix result can be 
explained by the presence of the horizontal lines in figure 6 (see 1131). When the spectrum 
is unfolded, these lines go over into lines that have a large slope (except near 01 = n/Z as 
will be discussed later). They thus contribute to large positive velocities. Similar results 
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Figure 9. The cuwaNre distribution Pk) at c = 0 in camparison with the WE-distribution of 
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were obtained for the hydrogen atom in a strong magnetic field, a system which has a large 
number of scarred states [13]. 

The curvature distribution that is shown in figure 9 is likewise not in agreement with 
the random matrix result. There is a large excess of small curvatures in comparison with 
the distribution of (92). These results are again in qualitative agreements with results for 
the hydrogen atom in a magnetic field and also with results for the stadium billiard where 
the parameter is the length of the straight section of the boundary [33, 131. 

The high peak of the distribution at small curvatures can be explained by two effects. 
The horizontal l i e s  in figure 6 contain long pieces where the curvature is almost zero. This 
is still the case after unfolding the levels and these parts of the spectrum thus contribute to 
an accumulation of small curvatures. Secondly, as has been noted above that they are also 
responsible for an excess of large velocities. This excess leads to an increase of the variance 
of the velocity distribution and, by definition (91), to a decrease of the curvatures. 
Because of these effects i t  has been suggested that the excess of small curvatures can be 
taken as a measure for the degree of scarring in a system 133, 131. We will discuss this 
point in more detail when considering results for other values of the parameter a. 

It is possible that the small avoided level crossings along the horizontal lines also lead 
to a non-generic curvature distribution at large curvatures [13]. but the number of levels has 
not been large enough in order to check this in detail. 

In order to see whether the discrepancy between the calculated distributions and the 
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with a Gaussian, as described in the text. 

random matrix result is only due to levels in the vicinity of the horizontal lines, we 
disregarded these levels and determined the distributions with the remaining levels. The 
levels which are taken out, however, have on average large velocities and therefore the 
average velocity of the remaining levels is different from zero. This effect can be removed 
by choosing a different unfolding mechanism which takes into account the fluctuations in 
the spectrum due to the bouncing ball orbits. This is done by defining 

(93) 

where Nbb(k) is the semiclassical contribution of the bouncing ball orbits to the spectral 
staircase. We would like to note that this unfolding procedure alone already leads to a more 
symmetric velocity disuibution and reduces slightly the peak of the curvature distribution 
at small curvatures. 

We varied the number of levels that were removed and found that we had to neglect 
about 25% of the spectrum until most of the non-generic contributions to the distributions 
were removed. The resulting velocity and curvature distributions, obtained by unfolding 
with (93). are shown in figures 10 and 11. The agreement with the random matrix results 
is now much better than before. One can still see some small deviations, but the main 
part of the non-generic contributions are removed. This indicates that wavefunctions that 
are scarred along the bouncing ball orbits are really the reason for the deviation from the 
random matrix results. 

We have also calculated the velocity and curvature distributions for several other values 
of the parameter a. Over a large range of this parameter the results are very similar to those 
for a = 0. The velocity distributions are asymmetric and have a tail at large velocities 
which is larger than for a Gaussian and the curvature distributions show an e x c m  of small 
curvatures. Also, if one again removes the part of the spectrum which is mostly affected by 
the bouncing ball orbits and performs the unfolding with (93) the agreement with the random 
matrix results becomes quite good. However, as one approaches the value a = 1112 the 
distributions become qualitatively different. In figure 12 the distribution of all velocities in 
the range 100 < k, c 300, unfolded without bouncing ball terms, is shown for o! = 1112. It 
is compared to a Gaussian with the same mean and standard deviation. Here the agreement 
with the Gaussian is better than for the distribution foro! = 0 in figure 8. The distribution is 
more symmetric, the peak at U = 0 is lower and there is a smaller excess of large velocities. 
The curvature distribution is shown in figure 13. It differs strongly from the 1y = 0 case. 
There is much less contribution from small curvatures and the deviations from the random 

x n  = @ ( k d  + Nbb(kn) 
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Figure 13. The curvature distribution P ( c )  Y a = n J 2  in comparison with the WE-distribution 
of (92). 

matrix curve are mainly due to an asymmetry in the distribution. 
The different behaviour near (Y = z / Z  can again be explained by the apparent lines in 

the spectrum. As was discussed in the last section, these lines are not quite horizontal near 
01 = nj2, but they have a negative slope and negative curvature. As a consequence, when 
the levels are unfolded they have smaller velocities and larger (negative) curvatures than in 
the case 01 = 0. This is exactly the difference that is observed in the velocity and curvature 
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distributions. 
We also tried for CY = a/2 to improve the agreement with the random matrix results 

by removing a part of the spectrum and unfolding with (93). However, in this case the 
agreement does not improve. The peak of the velocity distribution goes down, but the 
distribution is slightly asymmetric and the peak of the curvature distribution decreases below 
that of the random matrix result. Currently, we do not have a satisfactory explanation for 
this result. Possible explanations are that due to the stronger U dependence of the horizontal 
lines they also have an influence on more distant energy levels, or that the mixed boundary 
conditions do not behave generically near Neumann boundary conditions, at least in the 
energy range considered. 

A definite interpretation of our results would also require an examination of 
wavefunctions. However, in the case that there are many scarred wavefunctions at CY = n/2, 
our results seem to indicate, that scarred states do not necessarily have to lead to an 
accumulation of small curvatures. A prerequisite for such an accumulation is an almost 
linear change of the corresponding energy levels with the parameter CY, which is not 
necessarily the case. 

Finally, we add a remark on the choice of the parameter CY. The curvature distribution 
is not independent on this choice if it is evaluated within a restricted energy range. We 
chose a parameter dependence that is symmetric with respect to Dirichlet and Neumann 
boundary conditions, but in principle, one could define a different parameter h =  CY) 
and then the curvature distribution would change. For example, at CY = x/4 we calculated 
the curvature distribution also for the K-dependent boundary conditions of (4) and we got a 
slightly different result than for the CY dependence. (At CY = n/2 there is no difference, since 
the Taylor expansion of the sine has no quadratic term.) Examinations of the universality of 
the curvature distribution thus also require a careful definition of the parameter dependence. 

6. Discussion 

In this paper we have extended the semiclassical methods for treating billiard systems to 
situations where the boundary conditions interpolate between the standard Dirichlet and 
Neumann conditions. The parametric dependence on the boundary condition was shown to 
be a very useful tool in the spectral analysis and in the context of the parametric spectral 
statistics, the variation of the boundary condition is similar to the variation of any external 
parameter in a Hamiltonian system. It should be born in mind, however, that the boundary 
condition is strictly a wave (quantum) feature and as such, has no classical analogue. 
In this sense the system we consider here is different from the usual parameter-dependent 
Hamiltonian systems, where the parameter has similar meanings in the quantum and classical 
representations. We shall address this point in the present section and show that, in one 
limit, there exists an alternative interpretation of the mixed boundary conditions. We will 
also discuss some results which can further illuminate some features of the semiclassical 
approximation for mixed boundary conditions. 

We shall show first, that the variation of the spectral density in the vicinity of the 
Dirichlet boundary condition can be related to a variation of the boundary itself. The latter 
certainly has a similar meaning in both the classical and the quantum pictures. We rewrite 
the mixed boundary conditions, equation (4), as 

where E = K - ' ,  E > 0. This defines a Green function, G(F',T"; E ) ,  and its derivative with 
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respect to 6 near E = O+ (Dirichlet case), g ( 7 ,  r"'), can be easily shown to satisfy 

(95) 
where Go(?, ?'I is the free Green function. Let us now define a uniform inflation of the 
boundary, which is affected by shifting each point p' on the boundary a distance U along 
the normal: 

z ( U ) : ; + ; + u i ( p ' )  ; E x .  (96) 
Note, that this inflation is not just a rescaling of the coordinates, except for special cases 
like the circle billiard and regular polygons. Hence, the structure of the periodic orbits will 
in general change. Keeping the boundary condition to be Dirichlet ( E  = 0) for all values of 
U, one can show after some calculation, that aG(r'', 7"; u)/aul, ,o satisfies the same integral 
equation (95) as for g(?', ?"). Thus we establish the relation between Green functions 

S, -I -I, g(r  , r + S, ~ p ' )  G ~ F ,  p') a ig(z ,  i") = - aiGo(i'. 3 a m p ' .  7"; E = 0) 

(97) 
- aG(i' ,  7'; E ,  U )  1 aG(r",r"'; E ,  U ) /  - 

a6 S="=O av <="-I 

To derive the relation between the spectral densities we use fork > 0 
2k 

d(k;  E ,  U) = -- lim d? Im G(F, r'; kz + is; E ,  U). 
]I 6 1 0 t i  

The derivative with respect to e affects only the integrand, while the derivative with respect 
to U also affects the integration domain. However, since we consider Dirichlet boundary 
conditions (e = 0), we have G(r', F; E = 0) = 0 for r' E C, and the second contribution is 
0. Therefore we conclude: 

ad(k; e* (99) E ,  v) = 
av 

This exact result becomes clear intuitively in the semiclassical limit: for the smooth part 
of the level density we can use aA/aul,=o = L ,  where A ,  L are the billiards area and 
perimeter, respectively. When this is inserted into (7) we get to leading order: 

(100) 
a&k; E ,  U) a&k: E ,  U) I = - Lk , 

as I =  e="* av r=v=O 2?r 
(For smooth billiards one also gets the next term by similar methods.) As for d , , ,  only 
consider the contributions of generic periodic orbits which are far from tangency to the 
boundary. In the Gutzwiller sum, only the fast varying derivatives of the actions kL,  
with respect to U will be important in the semiclassical limit. Simple geometry shows that 
aLc,/avl,+ = ?.C;:,coset, and together with the relation a/ael,=o = ba/aorl,=O one 
gets the desired equivalence (see equation (86)). 

Even though the boundary condition is a pure quantum feature, its expression in the 
semiclassical spectral density depends on the underlying classical dynamics and deserves 
some more discussion. In particular, we shall now study the phase factor which multiplies 
the contributions of the generic unstable periodic orbits (9). The main feature of this phase 
is that for the mixed boundary conditions it depends on both k and the angles of incidence 
e,, i = I ,  . . . n along the periodic orbit. This should be contrasted with the Dirichlet and 
Neumann boundary conditions, where a reflection leads to a simple factor of (-1) or (fl) ,  
respectively. 

Let us consider the phase factor for very long periodic orbits. We are interested in orbits 
that fill the phase space uniformly, so that the phase factor can be calculated approximately 
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by an ergodic averaging over phase space. The appropriate coordinates for doing this are 
the length along the perimeter s and the canonical momentum p = cosq, where q is the 
angle of the reRected trajectory with the (directed) tangent. The phase 0 is then obtained 
as 

The number of reflections on the boundary n can be expressed by n = l / (c) ,  where 1 is 
the length of the orbit and (c )  is the mean chord length, i.e. the mean distance between 
two consecutive reflections on the boundary. Denoting by c(s, y )  the length of a chord that 
starts at s with an angle p with respect to the tangent, the mean chord length is obtained by 

H A  
L 

=-_ 

where a transformation to an angle (Y with respect to a fixed direction in space has been 
made and c(s, (p) = 0 for directions that point outside of the billiard. The integral over ds 
gave the area A ,  since ds sin (p is the component of ds orthogonal to the chord. With this 
result the phase @ is given by 

This additional phase can be interpreted as a small correction to the classical action 1 . k 
which is the leading term in the semiclassical phase. The expression which multiplies 1 in 
(103) leads to a mean shift in the spectrum with respect to the Dirichlet value: 

On the other hand the mean spectral shift due to a change in the mean number of levels is 
semiclassically given to leading order by (7) 

where = I/&) is the mean distance between wavenumbers. The result is identical 
to (104). It shows that the ergodic average over the additional phase is responsible for the 
mean shift of the energy levels with respect to the Dirichlet case. The deviations of the 
phase factors of periodic orbits from the ergodic mean thus lead to fluctuations of the energy 
levels around their mean shift. The fact that the mean shift in the energy levels, which is 
derived from considering very short orbits, can also be obtained from the ergodic average 
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of very long orbits is another example of the bootstrapping property in periodic-orbit theory 
1401. 

The last comment is a word of caution. The mixed boundary conditions were shown 
to appear in the expressions for the smooth and the oscillatory components of the spectral 
density. The theory presented here for the smooth part gives the first few leading terms 
in the asymptotic expansion of J ( k )  in powers of k-'. This is not true for the oscillatory 
contribution, where only the leading contribution was considered. 
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Appendix. The smootb part of the spectral density for the semicircle billiard 

In this appendix, the smooth part of the spectral staircase #(k) is derived for a semicircle 
with mixed boundary conditions on the circular part of the boundary and Dirichlet or 
Neumann boundary conditions on the diameter. respectively. The derivation is done by 
using the methods of section 2.1. From the results the conhibution of a 90" corner is 
extracted. 

The Green function for the semicircle billiard is obtained from that of the circle billiard 
by the method of images: 

e(;, i ' ,SZ) = *(i, 7, S2) &e(?, 8;: S2) (AI) 

where the upper and lower sign correspond to Dirichlet and Neumann boundary conditions 
on the diameter, respectively and the operator 8 denotes the reflection on the line y = 0. 
The upper index c will from now on denote the quantities for the full circle billiard. From 
(AI) the Green function for the semicircle follows as 

I m  
2% "=-cc 

e(;, if. sZ) = -- C l n ( s r e ) [ K n ( s r , )  + a,~,(sr,)l[cosn(~ -e ' )  r cosn(e + e ' ) ] .  

(A2) 

Subtracting the free Green function and taking the trace results in 

= ;E'(S') 7 $RZIf(O,  S )  - 10(5R)Ko(SR) i I,$(sR)K&R)I I (A3) 

Now, the asymptotic expressions for the Bessel functions for large arguments are inserted 
and after expanding in powers of l / ( s R )  one obtains 
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From this the contributions to the mean level density and to the mean spectral staircase 
follow as 

x - 1 -  R I  
2 2x 2nk I+(;)’ 

g(k) = -de(k) - - 
and 

K 8  
1 -  
2 

N ( k )  = -NC(k) 7 

where the constant term has been determined as discussed in section 2.1. The term 
7 k R / ( 2 x )  in (A6) is the contribution of the diameter to N(k).  The last term in (A6) 
is the contribution of the two comers and thus it follows that the contribution of a 90” 
corner with mixed boundary conditions on one side and Neumann and Dirichlet boundary 
conditions, respectively, on the other side is given by 
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